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Abstract—In high-frequency metro lines, unexpected
disturbances often occur to cause train delays, which will
influence the application of pre-optimized timetables. Real-
time train regulation adjusting running and dwell times is an
effective method to suppress train delays. This paper
investigates a real-time metro train regulation method
combining the distributed model predictive control (DMPC)
algorithm, which is motivated by the technology of vehicle-
based train control system. In the vehicle-based system, each
train is self-organized with the capability of communication
and computation. Firstly, an optimal control model is
established for the metro train regulation process considering
the train traffic dynamics, system constraints and objectives.
Then, a distributed control framework is proposed to solve the
optimal control model. In addition, DMPC algorithms with no
information transmission, single-direction and bi-direction
information transmission are designed, aiming to analyze the
influence of the communication modes on the DMPC
algorithms. Finally, the proposed algorithms were subjected to
numerical validation to assess their efficacy. The results show
that the DMPC algorithm with bi-direction information
transmission achieved significant performances in reducing
computation costs and suppressing train delays.

Keywords—Urban  rail  transit, Train rescheduling,
Distributed model predictive control, Quadratic programming

I. INTRODUCTION

Metro traffic is one of the most important components of
public transportation, since it is regarded as an efficient
transportation mode with high security, large capacity and
low energy consumption. Metro trains are usually running
with high-frequency to transport a large number of
passengers. Metro traffic is inherently unstable: any
deviation from the nominal timetable of a train will amplify
over time and disturb the operation of other trains [1]. In
real-time operations of a metro traffic system, unexpected
disturbances often affect the orderly operation of trains,
which will result in train delays. Once the train delays cannot
be effectively mitigated, they will have a negative impact on
the quality of service and even cause serious interferences
during peak hours [2]. In order to reduce the influences of
disturbances, train regulation is necessary to recover train
delays and to keep the stability of metro traffic systems [3].

At present, train regulation is carried out in a centralized

This work was supported by the Independent Research Project of
Zhejiang Scientific Research Institute of Transport under grant no.
7K202321.

way, in which a dispatcher is in charge of all traffic
management covering a specific control area. Meanwhile,
related decision support tools providing optimal control
strategies for train regulation consider a centralized decision
making [4]. With the development of vehicle based train
control technology in metro traffic systems, trains are
autonomous and connected with the capability of making
self-organized regulation decisions and communicating with
other trains [5]. Then, the central train regulation decision-
making tasks are broken down to each intelligent train. These
trains adjust the running and dwell times to recover train
delays according to the system states information they can
obtain, including their own states and information
transmitted by other trains. However, this decentralized way
can only deal with disturbances, not disruptions [4].
Disruptions refer to large incidents, requiring both the
timetable and the planning of train service to be modified
(e.g., cancelling or adding train services). In this paper, we
only focus on the train regulation problem under
disturbances, which can be dealt with by adjusting the
running and dwell times.

Although some researchers in studies [5]-[7] begin to
solve this problem in a decentralized method with connected
and autonomous trains, there is typically a lack of systematic
analysis. In general, the lack of this method mainly includes
the following aspects. 1) In a decentralized control problem,
the mode of communication is critical, which will influence
the control effect [8]. However, the related studies only
consider the situation that each train can communicate with
its predecessor. It is necessary to consider and analyze the
performances of decentralized train regulation controllers
under different information interaction modes, like no-
communication and bi-direction communication. 2) To
address the decentralized train regulation problem, it is
necessary to propose a more appropriate model and
algorithm considering various communication modes.

This paper aims solve the problem of metro train
regulation problem by making the following contributions. 1)
A decentralized train regulation model, which considers
different modes of information interaction between trains, is
formulated. The purpose is to describe train regulation
problem with different MPC architectures. Previous related
works [5]-[7] have only built a decentralized train regulation
model with single-direction information transmission. To
analyze the decentralized train regulation problem more
comprehensively, models with different modes of
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information interaction should be built. 2) DMPC algorithms
are designed to generate real-time optimal control actions
while minimizing the impact of disturbances.. At each
control cycle, a local control action is obtained by solving the
subproblem of each train. Furthermore, the effectiveness of
the proposed approaches is validated through the
implementation of numerical examples based on one of the
metro lines in Guangzhou.

The rest of this paper is organized as follows. Section 2
provides an overview of the metro train rescheduling
problem. In Section 3, we present our proposed methodology
for the metro train regulation problem. Section 4 tests the
practical application of our proposed approaches through two
numerical examples. These examples include a single
disturbance case and a multiple disturbances case. Finally,in
Section 5, we conclude this paper, summarizing the key
findings and potential avenues for future research.

II. OPTIMAL TRAIN REGULATION PROBLEM

A metro line with / stations, where J trains orderly
running through stations is considered, as shown in Fig. 1. In
real-time operation of metro lines, the timetables are unable
to keep the pre-scheduled settings and train regulation
strategies should be taken to make the disturbed timetables
revert to the pre-scheduled ones. The metro line traffic
dynamics, regulation objectives and system constraints
should be considered to generate the optimal train regulation
problem.

Train j

N |\ N
Depot e ><Terminal

Fig. 1. The illustration of the considered metro line

Train j-1 Train j-I+1

To conduct a more rigorous study of the train regulation
problem, certain assumptions are formulated based on the
operational characteristics of metro lines. These assumptions
are as follows:1) The overtaking operation is not considered,
trains are following the manner of first-in-first-out; 2) The
skip-stop operation is not considered, trains stop at all
stations among the line.

A. Traffic dynamics
The discrete-event train regulation mode is built based on
the study [9]. The actual departure time can be described as:

thy=tiyiryid, (1)
where, 7 is the index of stations, 1 < i < [;; is the index of
trains, 1 < j < J;,¢t’is the actual departure time of train j at
j

station i ; / is the actual running time of train j from

station i to station i + 1 ; d’ is the actual dwell time of train

j at station 7 .

The actual running time and dwell time can be
described as:

=R 4ur! +wr 2)

d, =D +udij-;»l +Wdi'i1 3)

i+1
where, R;is the nominal running time from station i to
station i + 1 ; ur’is the control action of running time of

train j from station i to station i+1; wr' isthe

disturbance of running time of train j from station i to

station i + 1 ; ID is the nominal dwell time at station i ; ud’;
is the control action of dwell time of train j at station i ;

wdis the disturbance of dwell time of train j at station i .

The train traffic dynamics model can be described by
combining Eq. (1)-(3):

tl:f+1 :ti +Ri +Di+1 +ur/ +udij+1 +wr/ +Wdij;r1 “4)

where , the running time and dwell time are affected by
uncertain disturbances, and control actions are implemented
to mitigate the effects of disturbances.

B. Regulation objectives

The train regulation problem aims to achieve several
objectives, including reducing timetable deviation, headway
deviation, cost of control actions. The objective function can
be described as:

J=p O (Y 4 pa Y (x =xI"Y 4+ pay (ur!)

o )
+p D (udly

where, p, , p, and p; are the weight coefficients. In the
objective function (5), the first part represents the total
timetable deviation (TTD). As an important metric, the
deviation from the nominal timetable can be defined as:

o=,/ .
Xl Lin =T, (6)

where, x/is the deviation of train j from nominal departure
time at station i ; 7 is the nominal departure time of train
j at station i . The second component of objective function

(5) pertains to the minimization of total headway deviation
(THD), which is crucial for ensuring the regularity of
headway, as emphasized in previous study [10]. The
headway deviation is defined as the difference between the
interval between successive trains and the nominal headway
H , which can be defined as:

' ~t )—H=x - - (/)

i+l i+1 i+1 i+1

The third and fourth components of the objective function (5)
represent the total magnitude of control actions. Minimizing
these components aims to reduce the overall control cost and
discourage excessive control actions.

C. System constraints

To guarantee the safety and feasibility of regulation
strategies, the following constraints should be considered.

1) The interval between the departure time of the
preceding train and the arrival time of the following train at
the same station should be larger than the minimum
departure-arrival interval:

tif — di_ jt-il > \V imin (8)

where, V¥, 1s the minimum departure-arrival interval at

imin

station i .

2) The dwell time at each station should be larger than
the minimum value:
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D tud'+ W = D 9)

1 ,min

where, D, is the minimal dwell time at station i .

i,min

3) The running time at each section should be larger than
the minimum value:

R tur’ '+ UV> R (10)

where, R, ., is the minimum running time from station 7 to

i,min

station i +1 .

4) The control actions should be within acceptable limits:

(UR <u’<UR
1 UD i,min S Mdj S UDmux (1 1)
L Lmun ' Lmux

where, UR, . and UR, .. are the lower and upper bounds

of the control action for the running time from station i to
station i + 1 respectively; UD ~—and UD  are the lower

and upper bounds of the control action for the dwell time at
station i respectively.

i min

D. Optimal train regulation problem
By taking into account the traffic dynamics, the
regulation objectives, and the system constraints, the optimal
train regulation problem can be established as follows:
min Y[ p (') + p (/= 2/ o+ p ()’
1i 2 i i 3 i
i
+p(ud’)]
3 i
s.t. Eq. (4), (6), (8)-(11).

III. DISTRIBUTED MODEL PREDICTIVE CONTROL FOR TRAIN
REGULATION

(12)

In this section, four methods based on MPC are proposed
to solve the proposed optimal train regulation problem. First,
the centralized model predictive control (CMPC) method,
which has been widely studied to solve the real-time optimal
train regulation problem [1], [3], [10]-[12], is introduced.
Then, a DMPC model handling different information
transmission modes is proposed, and the related algorithm is
designed to generate the optimal regulation strategy, as
shown in Fig. 2.

A. Model predictive control problem
Let k represent the stage, #, represent the state variables,

ur, and ud, represent the decision variables, the proposed

problem (12) can be transformed into the following MPC
problem:

mmz{p x +px -x Y& -x )
Tk+i+1 k+i+1 2 k+i+l k+i k+i+l k+i (13)
+pur” ur + pudud}
3k+ik+i 3 k+i k+i
Subject to:
tk+i+] = /\ k+l + TO k+i +R+ urk+i + wrk+i +D
(14)
+ud, ., + Wd, .,
i1 = b~ Ty (15)
\ymin Sbyn— D _”dk+i _wdk i Tl (16)

Dmm—D+udk+t +wdk+1 (17)
Rmm —R+urk+t +wrk+1 (18)
UR,, < ur..,<UR, . (19)
ub,, <ud,_, <UD, (20)

Since several parameters in the proposed optimal control
model (13)-(20), like Wr, and Wd,, are time-dynamics, and
the optimal control model is a complex optimization problem
with a nonlinear objective function, plenty of constraints and
multiple decision variables. By leveraging a real-timerolling
optimization framework, the MPC algorithm can handle
nonlinear high-dimensional optimal control problem with
dynamic disturbances. The MPC algorithm devised for
addressing the proposed problem can be decomposed into
three components.. 1) Prediction model: the model (4) can be
used to predict the system states. 2) Optimization problem:
the optimization problem (13)-(20) can be solved to obtain a

>TL Ul vptullial coluvul dTYUCILILC. Qpcullvally, uic
optimization problem is a quadratic programming problem. 3)
Rolling horizon: a set of optimal control sequence can be
obtained at each time step, while simultaneously
implementing the first control action to the system. At the
next time step, the prediction horizon is shifted one step
forward, and the optimization problem is solved again with
updated parameters.
B. Centralized model predictive control algorithm

Optimal train regulation studies based on MPC mainly
adopt the CMPC algorithm, where a centralized controller
receives system states and decides on the optimal control
sequence. The standard MPC formulation discussed in the
previous section can be characterized as a sequence of static

optimization problems {SP,| k= 0,1, 2,...} [13]:

Centralized
MPC

a1 ] vt ] [ ] y—"—|m.,l ﬁﬁ
System System
X e Xy X;

System System
Brae: L, s Jo
(¢) DMPCI (d) DMPC2

Fig. 2. Four model predictive control architectures. (a) CMPC: A single
centralized controller receives information about the system's current state
and determines the appropriate actions to take; (b) DeMPC: Local
controllers independently receive system states and make decisions without
exchanging information with other local controllers; (¢) DMPCI: Local
controllers receive system states and cooperate to make decisions with
single-direction information transmission; (d) DMPC2: Local controllers
receive system states and cooperate to make decisions with bi-direction
information exchange [8].
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[SP.:min  J(S,U)
N

st FS,U)<0
| G(S,U)=0

e2))

where, S is the vector of the state variables; U is the vector
of decision variables over the prediction horizon; J is the
objective function; F and G are the equality and inequality
constraints matrices in the optimization problem (13)-(20)
respectively.

The CMPC algorithm can be summarized in the
following manner.

Algorithm 2: DMPC algorithm

Step 1: Before train j departs from station, formulate the optimization
problem (22). Specially, S = @ in DeMPC algorithm; $*'=S in
J

J J=1

DMPCI algorithm; and $*'= {S, S } in DMPC2 algorithm.
J J=1 0+l

Step 2: Obtain the optimal control sequence by solving the formulated
optimization problem.

Step 3: Apply the first control action of the optimal control sequence and
update the system states. Meanwhile, train j transmits S ; to train j + 1 in
DMPCI algorithm; train j transmits S ;to train j —1 and j + 1 in

DMPC2 algorithm; nothing to do in DeMPC algorithm.

Step 4: Until train ; arrives at the next station, go to Step 1.

Algorithm 1: CMPC algorithm

Step 1: Formulate the optimization problem (21) at stage & .

Step 2: Obtain the optimal control sequence by solving the formulated
optimization problem.

Step 3: Apply the first control action of the optimal control sequence to the
system, and update the system states, set k = k +1, go to Step 1.

C. Distributed model predictive control algorithm
By applying the DMPC algorithm, the optimization
problem (21) in the CMPC algorithm can be divided into a

set of subproblems SP, ;:

(P, : min J(S,U,S™)
A
st F(S,U,S87)<0 (22)
| G(S,U ,87)=0

where, S and U represent the state and decision variables
j J

allocated to the j-th subproblem respectively, which can be

obtained by solving the subproblem SP, ; Sj”.b’ represents
the obtained state variables from other DMPC controllers by
information  transmission allocated to the j-th
and G,  represents the objective

function, equality and inequality constraints matrices
allocated to the j-th subproblem respectively. In the DMPC

algorithm, the set of variables S is divided into three
subsets: S, S and §, with S = § U S§™uU §™, where
D ; , ,

J J J J J

subproblem; J ;, F;

§"" represents the unacquirable variables.

Each subproblem SP, ,is assigned to the optimal train
regulation problem of train j at stage & . The local variables
S ;and U ;are assigned to the state and control variables of
train j respectively. The obtained variables S”,.’” is assigned

to the state variables from the connected trains. Due to the
different information transmission modes, the DMPC
algorithms can be divided into three types: DeMPC,DMPCI1
and DMPC2, as shown in Fig. 2. For the DeMPC, there is no
exchanging information between local controllers, thus
S = @ . And for the DMPCI, the local controller can only
receive the information from the front controller, which
means qubf: Sﬁ1 . Specially, for the DMPC2, the local

controller can both receive the information from the front
S, } . Then,

three DMPC algorithms are proposed tor the optimal train
regulation problem:

and latter controllers, which means S”';’ ={S,.

IV. NUMERICAL EXAMPLES

A. Case study conditions

The case studies are based on one of the Guangzhou
metro lines with 13 stations (i.e., / = 13 ). The up direction

operation from station 1 to station 13 of the metro line is
considered in the case studies. Given the frequent occurrence
of disturbances during peak hours, the testing period for train
regulation is selected to be the morning peak hours. The
corresponding nominal timetable parameters are shown in
Table 1.

TABLE 1. NOMINAL TIMETABLE PARAMETERS DURING MORNING PEAK

HOURS
Station Nominal Minimum Nominal Minimum
index running time | running time dwell time dwell time
[s] [s] [s] [s]
1 0 0 60 50
2 129 120 45 35
3 86 79 45 35
4 116 109 45 35
5 81 76 45 35
6 111 101 50 35
7 102 97 44 35
8 124 119 46 35
9 99 92 47 35
10 74 68 55 45
11 75 69 50 35
12 96 88 48 35
1§m .13'11 ) 1125 ] 6,0,. . 45
I'he nominal headway between trains /7 1S S€t as 15Us,

in the morning peak hours. The prediction step horizon L is
chosen as 4. The lower and upper bounds of the control
action are respectively set as UR —30s, UR,,... = 30s,

i,min = imax
up,,., = —20s , UD,,,. =20s , and the minimum

departure-arrival interval W is set as 20s. In the case

studies, the start time is 7:00 am setting as Os (£ = 1), and
the end time is 7:50 am setting as 3000s. The departure time
of the first train at station 1 is 10s, and the departure timesof
trains at station 1 is [10,160,310,...,3010],,,. At stage 1, the
original timetable deviations are equal to zero. To maintain
generality, the objective weights are set to be equal (i.e.,
P = p, = p;=1). The case studies are conducted within the
MATLAB environment on a personal computer (Intel Core
i5 2.30 GHz CPU and 8GB RAM). The quadratic
programming problem is solved utilizing the quadprog
function provided by MATLAB. In the case studies, five
train regulation strategies are compared, namely: (a) Strategy
NC: strategy without regulation; (b) Strategy CMPC:
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strategy involves CMPC; (c) Strategy DeMPC: strategy
involves DeMPC; (d) Strategy DMPCI1: strategy involves
DMPCI; (e) Strategy DMPC2: strategy involves DMPC2.

B.  Single disturbance scenario

First, we set a single disturbance, Wr52 = 70s , to verify

the effectiveness of the proposed control strategies. The
control action and timetables are shown in Fig. 3 and 4
respectively. Specially, the control action in Fig. 3 is defined
as ur, + ud,,. Table 2 presents the performances of the five

strategies under single disturbance scenario. Specially, TTD
1

1s detined as [Z(x{)Z ]2_ ,and T'HD 1s detined as
L]

1

[l = )P,

TABLE 2. THE PERFORMANCES OF SINGLE DISTURBANCE SCENARIO

Type of strategy NC CMPC | DeMPC | DMPCI | DMPC2
TTD [s] 232.16 | 103.58 96.60 105.95 101.18
THD [s] 32833 | 115.14 | 136.61 116.66 119.96
ACT [s] / 0.06 0.01 0.01 0.01

As shown in Fig. 4, an initial delay of train 5 at station 3
leads to the propagation of delay to subsequent stations. Due
to the differences in control strategies, the applied control
actions of the five strategies are quite different, as shown in
Fig. 3. In the strategy NC, no control action is implemented
to mitigate the propagation of delays, as shown in Fig. 3 (a),
thus the initial delay of train 5 is transmitted to subsequent
stations without attenuation or mitigation, as in shown Fig. 4
(a). Meanwhile, without considering minimizing the
headway deviation, the departure times of the successive
trains, (i.e., train 4 and train 6), are not adjusted to keep the
regularity of headway.

0 o
5 & 0 m & 4w # 0 2 4 6 8 W 12

Station index Station index Station index

(a) Strategy NC (b) Strategy CMPC (¢) Strategy DeMPC

0 20

0

oy Y 3

10 \ /4 N
B4 £ L

) ¢ 4 o

w12 ¥ 4.5 & 0
Station index
() Stiategy DMPC2

Control action [s]

+ 6 8
Station index
(d) Smategy DMPCL

Fig. 3. Control actions of single disturbance case.
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Fig. 4. Timetables of single disturbance case.

Considering the other four optimized strategies (CMPC,
DeMPC, DMPCI1 and DMPC2), control actions are applied
to suppress train delay propagation, as shown in Fig. 3. In the
strategy DeMPC, only the timetable of train 5 are adjusted to
reduce the timetable deviation of train 5. As shown in Fig. 4
(c), the timetable deviation of train 5 is effectively reduced
compared to the strategy NC. However, the timetables the
front train (i.e., train 4) and the latter train (i.e., train 6) are
not adjusted to minimize the headway deviation, it is because
they cannot get the state information of train 5. From more
holistic perspectives, the strategy CMPC, DMPC1 and
DMPC2 perform better in reducing the headway deviation.
In addition, the quantities of information that the controllers
can obtain are different in these three control strategies. The
centralized controller can obtain all the system state
information in the strategy CMPC, the local controllers can
obtain the state information of the successive trains and the
controlled train in the strategy DMPC2, and the local
controllers can only obtain the state information of the front
train and the controlled train in the strategy DMPCI.

Considering the performances of the five strategies, the
strategy NC performs the worst in terms of TTD and THD.
In the strategy DeMPC, timetables are optimized without
considering minimizing the headway deviation, thus the total
deviation from the timetable is minimized to the greatest
extent compared to other strategies. However, the total
deviation in headway, or the time interval between
consecutive trains, is larger compared to the other three
optimized strategies. The strategies CMPC, DMPCI, and
DMPC2 have demonstrated effective outcomes in reducing
both TTD and THD. Furthermore, these distributed control
strategies exhibit superior performance in terms of average
computation time (ACT).

TABLE 3. THE DISTURBANCES OF MULTIPLE DISTURBANCE SCENARIO

Disturbance Disturbance Stage Station Intensity

index type index index [s]
1 wr 6 3 70

2 wr 11 7 30

3 wr 15 10 30

4 wr 15 2 30

5 wr 18 5 40

6 wd 3 30

7 wd 7 3 30

8 wd 14 10 40

9 wd 15 5 40
10 wd 16 5 30

C. Multiple disturbances scenario

Second, we set multiple disturbances, as shown in Table
3, to verify the effectiveness of the proposed control
strategies. Table 4 presents the performances of the five
strategies under multiple disturbances scenario. The
performances of the four optimized strategies vary dueto the
utilization of different control algorithms, as indicated in
Table 4. Compared with the strategy NC, TTDs of the
strategy CMPC, DeMPC, DMPC1 and DMPC2 are reduced
by 55.8%, 62.7%, 54.0% and 57.5% respectively, and THD
of the strategy CMPC, DeMPC, DMPC1 and DMPC2 are
reduced by 60.3%, 55.4%, 59.5% and 59.1% respectively.
These four optimized strategies achieve significant results in
reducing TTD and THD. The strategy DeMPC performs best
in reducing TTD However, the strategy DeMPC does not
perform well in reducing THD because it does not consider
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the state information of successive trains. In terms of
performances, the strategy DMPC2 is the most balanced
strategy, TTD and THD of it are both reduced to lower levels.
Thanks to the distributed control framework, ACTs of the
strategy DeMPC, DMPC1 and DMPC?2 are shorter compared
to the strategy CMPC.

TABLE 4. THE PERFORMANCES OF MULTIPLE DISTURBANCE SCENARIO

Type of strategy NC CMPC | DeMPC | DMPC1 | DMPC2
TTD [s] 393.68 | 173.83 146.92 180.95 166.97
THD [s] 398.33 | 158.03 177.45 161.16 163.02
ACT [s] / 0.06 0.01 0.01 0.01

V. CONCLUSION

This paper focuses on investigating the real-time
regulation problem of metro trains with the aim of mitigating
the impact of disturbances. Considering the development of
self-organized trains with the capability of communication
and computation, we developed a decentralized train
regulation optimization model, in which different
information transmission modes are considered. To solve this
real-time high-dimensional optimal control problem, this
paper proposed efficient train regulation algorithms based on
the DMPC framework.

To evaluate the effectiveness of the proposed approaches,
two different scenarios are examined: the single disturbance
scenario and the multiple disturbances scenario. These
scenarios are employed to evaluate the performance of the
proposed methods wunder different conditions. The
computational results showed that, by applying the DMPC
algorithm, the total timetable deviation and headway
deviation could be effectively reduced around 54% to 63%
and 55% to 60% respectively compared with the safe
strategy without regulation, and the computation timetable
could also be effectively reduced compared with the CMPC
algorithm. Especially, the DMPC algorithm with bi-direction
information transmission exhibited better performance in
minimizing both the total timetable deviation and headway
deviation when compared to other DMPCalgorithms.

The current paper primarily addresses the train regulation
problem under disturbances. Our forthcoming research will
primarily concentrate on addressing the train regulation
problem in the presence of disruptions.
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